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Characterizing the Distribution of
Macronutrient Intake among U.S. Adults:

A Quantile Regression Approach

Jayachandran N. Variyam, James Blaylock, and David Smallwood

Since the risk of dietary inadequacy or excess is greater at the tails of the nutrient intake distribu-
tions than at the mean, marginal effects of explanatory variables estimated at the conditional mean
using ordinary least squares may be of limited value in characterizing these distributions. Quantile
regression is effective in this situation since it can estimate conditional functions at any part of the
distribution. Quantile regression results suggest that age, education, and income have a larger influ-
ence at intake levels where the risk of excess is greater compared with intake levels where the risk
of excess is lower.
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The growing evidence on the health effects
of foods, nutrients, and other dietary
components has heightened interest in the
composition of U.S. food demand and supply
(Kantor) and the quality of American diets
and their determinants (Adelaja, Nayga, and
Lauderbach; Bowman et al.; Chern; Gould
1996; Nayga). An important but often over-
looked consideration when studying dietary
intakes is that the risk of inadequacy or
excess, and the risk of adverse health effects,
is greater at the tails of the intake distribu-
tions than at the mean.
To illustrate this point, table 1 reports the

mean and selected percentiles of the daily
intake of four major macronutrients among
men and women 18 years or older, obtained
from the 1994–96 Continuing Survey of
Food Intakes by Individuals (CSFII). Table 2
reports the recommended daily intakes for
these same macronutrients. Clearly, most
mean and median intakes are within the daily
intake levels recommended by health author-
ities. For example, the recommended daily fat
intake for men between age 19 and 50 is less
than or equal to 96.7 grams of fat, based on
a 2900-calorie diet. The mean and median
intakes of total fat for men during 1994–
96 are about 92 and 84 grams, well within
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this recommended level. However, intake at
the 90th percentile is 146 grams, consider-
ably above the healthful level. Similarly, for
women, the cholesterol intake even at the
75th percentile, 273 milligrams (mg), is below
the recommended daily intake of 300 mg,
whereas at the 90th percentile the intake
(389 mg) is well above the healthful level.
Clearly, from a public health and nutrition
policy perspective, characterizing the popu-
lation at the tails of these dietary intake
distributions (75th and 90th percentiles of
saturated fat, for example) is of greater inter-
est than studying those around the mean.
Suppose we want to examine the difference
in the intake of a nutrient between two
demographic groups. If we limit our compar-
ison to mean intakes, we would know only
the average between-group difference over
the whole range of the intake distribution.
This implicitly assumes that the between-
group difference in intake is the same along
the whole distribution and neglects any pro-
nounced difference at one tail or the other.
From a policy perspective, the location of the
intergroup difference along the whole distri-
bution is arguably more important than the
average between-group difference. For exam-
ple, for a nutrient whose excessive intake is
of concern, policy makers would be more
concerned if the between-group difference is
located predominantly at the upper end of
the distribution as opposed to the lower end
of the intake distribution.
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Table 1. Distribution of Macronutrient Intake among U.S. Adults, 1994–96

Percentile

Nutrient Units 10 25 50 75 90 Mean

Men
Total fat Grams 43�2 60�2 83�8 114�5 146�0 91�8
Saturated fat Grams 13�3 19�4 27�9 38�8 50�9 31�0
Cholesterol Milligrams 121�4 181�6 283�2 423�2 594�8 329�7
Fiber Grams 8�0 11�6 16�2 22�9 29�8 18�1

Women
Total fat Grams 27�2 39�7 55�7 73�9 94�6 59�2
Saturated Fat Grams 8�4 12�3 18�1 25�0 32�6 19�7
Cholesterol Milligrams 71�6 113�2 176�5 272�9 389�3 209�6
Fiber Grams 5�9 8�6 12�4 16�9 22�3 13�5

Note: Weighted estimates. Men: N = 4882; women: N = 4714.

Just as the mean may give an incomplete
picture of the intake distribution, so might
the conditional mean in linear regression
models estimated by ordinary least squares
(OLS). Linear regression models have been
widely employed to determine marginal dif-
ferences in nutrient intakes between popu-
lation subgroups of interest to policymakers
(Adelaja, Nayga, and Lauderbach; Chavas
and Keplinger; Nayga). The OLS approach
is satisfactory if the marginal effects of pop-
ulation characteristics are identical over the
entire range of the dependent variable’s con-
ditional distribution. While this may be a
reasonable assumption in many cases, it is
unlikely to hold for dietary intakes because
of the increasing risk of inadequacy or excess
at the tails of nutrient intake distributions.
Key variables such as education are likely to

Table 2. Recommended Daily Intakes of Selected Macronutrients

Nutrient

Energy Total Fata Saturated Fatb Cholesterol Fiberc
Sex and Age (Calories) (Grams) (Grams) (Milligrams) (Grams)

Men
19–20 2900 ≤96.7 <32�2 ≤300 Age+5
21–24 2900 ≤96.7 <32�2 ≤300 33�4
25–50 2900 ≤96.7 <32�2 ≤300 33�4
51+ 2300 ≤76.7 <25�6 ≤300 26�5

Women
19–20 2000 ≤66.7 <22�2 ≤300 Age+5
21–24 2000 ≤66.7 <22�2 ≤300 23
25–50 2000 ≤66.7 <22�2 ≤300 23
51+ 1900 ≤63.3 <21�1 ≤300 21�9

Source: Lin, Guthrie, and Frazao, table 4, p. 6.
a Based on the recommendation that no more than 30% of total calories come from fat.
b Based on the recommendation that less than 10% of total calories come from saturated fat.
c For men and women 21 and above, the figures are based on the recommendation for a fiber intake of 11.5 grams per 1000 calories of energy.

exert a different effect at the tails of the dis-
tribution compared with the mean, especially
in the face of rapid increase in the flow of
health information.
The early 1990s saw significant changes

in nutrition promotion efforts (Davis and
Saltos). The Food Guide Pyramid was intro-
duced in 1992 and the Nutrition Labeling
and Education Act went into effect in 1994.
Economic models of information acquisi-
tion and use suggest that individuals with
greater human capital may acquire, process,
and use this type of new information with
greater efficiency in their dietary decision-
making (Ippolito and Mathios). Empirically,
it is more enlightening to look for the evi-
dence of such behavior at the tails of the
intake distribution than at the mean. By
focusing only on the conditional mean, the
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OLS approach may, therefore, provide an
incomplete picture of the factors promoting
healthier dietary behaviors.
In this study, we employ quantile regres-

sion to better characterize macronutrient
intake among U.S. adults by modeling
parts of the conditional distribution of
intakes other than the conditional mean.
The quantile regression approach relaxes the
assumption that the effects of explanatory
variables are constant along the whole distri-
bution of the dependent variable and allows
such effects to vary over the entire range of
dietary intake. This enables us to estimate the
intake differentials of population subgroups
at specific points of interest in the conditional
distribution, such as the 90th percentile for
saturated fat and the 10th percentile for fiber.

Empirical Approach

We estimated a set of regression equations
that expressed the quantity of nutrients con-
sumed by an individual as a function of his
or her sociodemographic and anthropomet-
ric characteristics. These equations can be
viewed as linear approximations of reduced
form nutrient demand functions derived
from Becker’s household production model
(Grossman; Strauss and Thomas). Alterna-
tively, they can be viewed as reduced form
demand functions derived from the charac-
teristics model developed by Lancaster. In
Becker’s model, households gain utility from
nonmarket commodities such as family mem-
bers’ health, which are in turn produced by
the households by combining time, human
capital, and purchased market goods. The
solution to the household maximization prob-
lem subject to technology, income, and time
constraints gives the demand functions for
the final commodities (such as health), inter-
mediate commodities (such as nutrients),
and market goods (such as foods). In the
Lancaster model, consumers maximize util-
ity derived not from the goods themselves,
but from the attributes of the goods they
consume. Diets, comprising a combination
of foods, embody positive attributes such as
taste and essential nutrients, and negative
attributes such as health risk associated with
saturated fat and cholesterol (Chern).
In either case, sociodemographic factors

enter into the demand functions because they
influence a consumer’s efficiency in produc-
ing and consuming health inputs or attributes.

For example, educational attainment affects
health production by raising technical and
allocative efficiencies of input use (Grossman
and Kaestner). Technical efficiency enables
the more educated to produce a larger health
output from a given level of health inputs.
Allocative efficiency enables the more edu-
cated to acquire and use information about
the true effects of inputs on health. Simi-
larly, if the demand for health is inelastic and
if health stock depreciates at an increasing
rate with age, then health investment should
increase with age (Grossman). In terms of
nutrient intake, this implies that older indi-
viduals are more likely to have better diets
than younger individuals.
These theoretical models do not indicate

where along the intake distribution the pred-
icated effects are likely to occur. The pred-
ications are based on the theoretical link
between inputs and health. However, the
observed input distribution, as in the case of
many nutrients, may be such that parts of the
distribution are within acceptable risk levels
while other parts exceed acceptable risk. In
such cases, it is clearly questionable to esti-
mate the predicated effect at one point of the
input distribution under the implicit assump-
tion that the effects are same at all points.
The more informative approach is to estimate
the effects at different points of the distribu-
tion so as to find where a predicted effect is
the largest. This can be accomplished by esti-
mating a set of quantile regressions for each
input of interest.
Although information and health behav-

ior variables act as intermediate pathways
through which basic sociodemographic vari-
ables influence dietary intakes (Gould and
Lin), we excluded them from our estimated
functions to avoid potential endogeneity
problems. Moreover, our objective was not to
estimate the effects of consumers’ intermedi-
ate choices on dietary intakes, but to map the
net effect of key sociodemographic variables
at different points along the intake distribu-
tion.

Data

The nutrient intake data for men and women
were obtained from USDA’s 1994–96 CSFII
(Tippett and Cypel). Each year of the three-
year CSFII comprised a nationally represen-
tative sample of noninstitutionalized persons
residing in the United States. Dietary data
for selected sample persons from a screened
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sample of 9664 households were collected on
two nonconsecutive days through in-person
interviews using 24-hour recalls. Information
on food intakes for both days was provided
by 15,303 persons, giving a two-day response
rate of 76.1%. From these, we selected adults
18 or above in age and excluded pregnant
and lactating women.
By combining the food records with a

nutrient database, CSFII provides informa-
tion on the intakes of a variety of macronu-
trients, vitamins, and minerals. We used the
mean daily intakes of total fat, saturated fat,
cholesterol, and fiber as our dependent vari-
ables. We focused on these four macronu-
trients because of their links to cardiovas-
cular disease, obesity, and certain types of
cancer (National Research Council). Rec-
ommendations on their intake are specifi-
cally mentioned in the Dietary Guidelines for
Americans.
Table 3 lists the explanatory variables used

in the regressions. These sociodemographic

Table 3. Explanatory Variables, Means,
and Sample Size

Variable Men Women

Household characteristics
Gross annual
income ($’,000) 39�5 36�1

Household size 2�9 2�8
Region (Northeast
omitted)
Midwest 0�24 0�25
South 0�36 0�37
West 0�21 0�20

Urbanization (city
omitted)
Suburb 0�46 0�44
Nonmetro 0�26 0�25

Personal characteristics
Level of education
(years) 12�7 12�6

Age (years) 49�0 49�1
Height (inches) 69�8 64�0
Weight (pounds) 183�4 151�7
Race (White omitted):
Black 0�10 0�13
Asian 0�02 0�02
Othera 0�05 0�04

Ethnic origin Hispanic 0�08 0�08
Sample size 4725 4362

Note: Additionally, two dummy variables representing survey year, six
representing survey season, two indicating whether the intake was
recorded on a weekend day, four indicating the respondent’s opinion
whether the recorded intake was less than or more than the usual intake,
and one indicating whether the respondent was on any kind of diet were
used in all regressions.
a American Indian, Alaskan native, or other.

and anthropometric variables fall into two
sets: household characteristics and personal
characteristics. Additionally, we included sev-
eral survey variables to control for time-
related variations in nutrient intakes and a
variable to indicate whether the respondent
was on any type of special diet. Income,
household size, education level, age, height,
and weight are continuous variables. The
remaining variables are dummy indicator
variables. This basic set of sociodemographic
variables has been used in most previous
studies of nutrient intake. Income is the
gross household income in the previous cal-
endar year from all sources before taxes.
Height and weight were included to con-
trol for the influence of body mass on the
amount of food intake. While previous stud-
ies have often used the body mass index
(BMI) for this purpose, estimating a single
coefficient for BMI implies a restriction on
the coefficients for BMI components, height
and weight. Therefore, we left height and
weight in the unrestricted form. Not listed
in table 3, but included in all regressions,
were fifteen dummy variables representing
time effects and special diet status. These
were two for survey year, six for survey sea-
son, two indicating whether the intake was
recorded on a weekend day, four indicating
respondent’s opinion whether the recorded
intake was less than or more than his or her
usual intake, and one indicating whether the
respondent was on any kind of diet. After
dropping observations that were incomplete
with respect to the explanatory variables, the
final sample sizes were 4725 for men and 4362
for women.
Based on the theoretical models discussed

earlier, we expect education and age to
have negative effects on the intake of fats
and cholesterol and positive effects on the
intake of fiber. For income, the effects are
harder to predict given that inputs such
as fats have both positive (taste) and neg-
ative (health risk) attributes. Income may
increase consumption of fat-rich foods with
taste enhancing attributes while income may
also provide better access to health informa-
tion tending to discourage consumption of
unhealthful foods. The net effect of income
will depend on which of these effects is dom-
inant. If the informational effect is dominant,
then income will have an effect similar to the
effect of education.
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Quantile Regression

Koenker and Bassett introduced quantile
regression as a generalization of the sample
quantiles to conditional quantiles expressed
as linear functions of explanatory variables.
This is analogous to the OLS regression
model that expresses the conditional mean
in a linear form. However, by permitting
conditional functions to be specified at any
quantile, quantile regression enables one to
describe the entire conditional distribution of
the dependent variable given a set of regres-
sors. The familiar least absolute deviation
estimator is a special case of quantile regres-
sion that expresses the conditional median
as a linear function of covariates. Quan-
tile regression’s ability to characterize the
whole conditional distribution is most potent
when there is heteroskedasticity in the data
(Deaton). When the data are homoskedastic,
the sets of slope parameters of conditional
quantile functions at each point of the depen-
dent variable’s distribution will be identical
with each other and with the slope param-
eters of the conditional mean function. In
this case, the quantile regression at any point
along the distribution of the dependent vari-
able reproduces the OLS slope coefficients,
and only the intercepts will differ.
However, when the data are heteroskedas-

tic (that is, the conditional variance of a
dependent variable’s distribution is not con-
stant but differs by the level of independent
variables), the sets of slope parameters of
the conditional quantile functions will differ
from each other as well as from the OLS
slope parameters. Therefore, estimating con-
ditional quantiles at various points of the dis-
tribution of the dependent variable will allow
us to trace out different marginal responses
of the dependent variable to changes in the
explanatory variables at these points.
Two additional features of the quantile

regression model are noteworthy (Buchinsky
1998). First, the classical properties of effi-
ciency and minimum variance of the least
squares estimator are obtained under the
restrictive assumption of independently, iden-
tically, and normally distributed (i.i.d.) errors.
When the distribution of errors is non-
normal, the quantile regression estimator
may be more efficient than the least squares
estimator. Second, since the objective func-
tion for the quantile regression estimator is
a weighted sum of absolute deviations, the
parameter estimates are robust to outliers.

Estimation and Testing

Let yi denote intake of a nutrient of the ith
sample person, i = 1� � � � �N . We assume that
the �th quantile �0< �< 1	 of the conditional
distribution of yi is linear in a K×1 vector of
explanatory variables, xi:

Q��yi � xi	= x′i��(1)

where Q��yi � xi	 is the conditional quantile
function and �� is the unknown vector of
parameters. The quantile regression estima-
tor of �� is obtained by solving

min
��

1
N

{ ∑
i�yi≥x′i��

��yi−x′i���(2)

+ ∑
i�yi<x′i��

�1−�	�yi−x′i���
}
�

This minimization problem has a linear pro-
gramming representation, which is guaran-
teed to have a solution in a finite number
of simplex iterations (Buchinsky 1998). Sev-
eral estimators for the asymptotic covariance
matrix for �̂� obtained from the above min-
imization are available, but for obvious rea-
sons, those that rely on the assumption of
i.i.d. errors are of limited value (Deaton).
Buchinsky (1995) has shown that the design
matrix bootstrap estimator provides a con-
sistent estimator for the covariance matrix
under very general conditions. In the design
matrix bootstrap, quantile regression is esti-
mated on a sample of N observations �y∗

i �x
∗
i 	,

i = 1� � � � �N , drawn randomly, with replace-
ment, from the original sample. The pro-
cess is repeated B times to obtain bootstrap
estimates �̂

∗
�b, b = 1� � � � �B. The covariance

matrix of �̂� is then obtained as the covari-
ance of �̂

∗
� computed from the B bootstrap

estimates with �̂� as the pivotal value.
The minimum-distance method can be

used to test for the equality of slope coeffi-
cients of a given dependent variable across
all estimated quantiles (Buchinsky 1998). Let
�̂P = ��̂

′
�1
� � � � � �̂

′
�P
	′ be a KP ×1 stacked vec-

tor of unrestricted parameter estimates from
quantile regressions at P quantiles. Let �R =
���11� � � � � ��P 1� �2� � � � � �K	

′ be a �K+P−1	×
1 vector comprising P unrestricted intercepts
and K − 1 restricted slope parameters. The
restricted parameter vector �R is obtained by
minimizing

Q��R	= ��̂P −R�R	′A−1��̂P −R�R	(3)
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where A is a positive definite matrix and R is
the appropriate restriction matrix. Under the
null hypothesis of the equality of slope coef-
ficients, NQ��R	 is distributed �2 with �PK−
P −K + 1	 degrees of freedom. Since the
equality of slope parameters will hold if the
i.i.d. assumption is valid, this is a general test
for heteroskedasticity. The optimal choice for
A is the variance–covariance matrix of �̂P ,
denoted by ��P . Given ��P , the usual F -
statistic for testing linear restrictions can be
used to test for the equality of the slope
parameters for a specific explanatory variable
at symmetrical quantiles such as 0.1q and
0.9q. If the null hypothesis of homoskedastic-
ity or the equality of the slope coefficients is
not rejected, the restricted slope estimates �R

give an optimal combination of the quantile
slope estimates. Also, given ��P , the variance–
covariance matrix of the restricted parameter
vector can be obtained as ��R = �R′ ��−1

P R	−1.
The quantile regression parameter esti-

mates are obtained by estimating a separate
equation at each quantile of each macronu-
trient. The variance–covariance matrix of the
estimates can be obtained by bootstrapping
each of these equations separately. How-
ever, to carry out tests of the equality of
slope coefficients for a given dependent vari-
able across the P estimated quantiles and to
obtain the restricted parameter estimates and
their standard errors, it is necessary to have��P , the variance–covariance matrix of the
stacked vector of parameter estimates at the
P quantiles. This can be obtained by simulta-
neously estimating quantile regressions at the
P quantiles for each bootstrap sample. Thus,
the following procedure was used for the esti-
mation and testing of the quantile regressions
for each macronutrient. First, the coefficient
estimates for a macronutrient were obtained
by running quantile regressions separately at
the P desired quantiles. Second, a bootstrap
sample was drawn for that macronutrient and
the bootstrap estimates for the P quantiles
were obtained by running quantile regres-
sions separately at the P quantiles for that
sample. Finally, after repeating the boot-
strap procedure B times, ��P was calculated
to obtain the standard errors of the coef-
ficient estimates and to conduct the equal-
ity tests. This estimation process was car-
ried out in Stata using the sqreg procedure
(Gould 1997). Additional details regarding
the estimation of the quantile regression
model and the asymptotic covariance matrix

of the parameters are in Buchinsky’s (1998)
methodological survey.

Results

Conditional quantile functions for the intake
of the four macronutrients were estimated
separately for men and women at five
selected quantiles �P = 5	. In tables 4 to
6 we report coefficient estimates for satu-
rated fat, cholesterol, and fiber. The pat-
terns of results for total fat and saturated
fat were almost identical. Therefore, we do
not present a table for total fat but dis-
cuss the results below. Further, the tables
report only the estimates for five key vari-
ables of policy interest—income, education,
age, race (black compared with white), and
ethnic origin (Hispanic compared with non-
Hispanic). For comparison with the quan-
tile estimates, the second column in each
table presents the OLS estimates. We also
computed the restricted coefficient estimates
using the minimum-distance estimator. To
conserve space, we do not present these esti-
mates in the tables but include the key results
in the discussion below. The complete set of
results for this study is available from the
authors upon request. The standard errors
for the quantile regression estimates were
obtained using the design matrix bootstrap
with B= 500 replications. The standard errors
for the OLS estimates were computed using
White’s method.
The R2’s are generally low, indicating

the high variation in the mean two-day
intakes but are in line with previous stud-
ies (e.g., Adelaja, Nayga, and Lauderbach).
The F -tests for the OLS regressions showed
high significance levels in all cases. Table 7
presents two sets of statistics for testing
the equality of slope coefficients across the
quantiles. One set gives F -statistics and the
associated p-values for the test that, for a
given independent variable, its slope at the
0.9 quantile is equal to its slope at the
0.1 quantile �q10 = q90	 and its slope at
the 0.75 quantile is equal to its slope at
the 0.25 quantile �q25 = q75	. As noted ear-
lier, if an F -test does not reject the equal-
ity of slopes at symmetrical quantiles, then
the restricted coefficient estimate �R gives
the optimal combination of the five quan-
tile slope coefficients. Such estimates, in gen-
eral, have lower variance than least squares
estimates (Buchinsky 1998). Comparing the
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Table 4. Quantile Regression Estimates: Saturated Fat Intake, 1994–96

Quantile

Variable OLS 0�10 0�25 0�50 0�75 0�90

Men
Income �×10−3	 −0�016 −0�009 −0�005 −0�011 −0�016 −0�019

�1�73	 �0�94	 �0�53	 �1�11	 �1�09	 �0�84	
Education −0�177 0�053 0�004 −0�154 −0�264 −0�521

�2�36	 �0�65	 �0�05	 �1�74	 �2�13	 �2�56	
Age −0�243 −0�126 −0�169 −0�222 −0�277 −0�363

�17�01	 �9�15	 �13�98	 �15�49	 �13�11	 �10�60	
Black −2�154 −1�182 −1�501 −1�967 −2�687 −2�046

�2�85	 �1�54	 �2�28	 �2�59	 �2�54	 �1�13	
Hispanic −2�464 −1�507 −0�747 −2�735 −3�756 −5�635

�2�88	 �1�72	 �0�98	 �2�57	 �2�35	 �2�51	
R2 0�153 0�078 0�084 0�087 0�098 0�105

Women
Income (×10−3) −0�010 0�010 0�001 −0�012 −0�009 −0�018

�1�47	 �1�64	 �0�07	 �1�68	 �0�84	 �1�11	
Education 0�035 0�039 0�042 0�047 0�015 0�035

�0�64	 �0�74	 �0�65	 �0�70	 �0�17	 �0�26	
Age −0�101 −0�036 −0�056 −0�096 −0�125 −0�150

�10�47	 �3�65	 �5�01	 �9�23	 �7�72	 �6�58	
Black −0�057 −0�333 0�099 0�577 −0�632 0�328

�0�11	 �0�64	 �0�18	 �1�16	 �0�85	 �0�27	
Hispanic −1�459 −0�704 −1�118 −1�503 −1�291 −1�561

�2�29	 �0�99	 �2�00	 �1�98	 �1�25	 �1�21	
R2 0�104 0�049 0�050 0�061 0�065 0�079

Note: Absolute t-values reported in parentheses. All regressions included an intercept and 25 additional explanatory variables; see table 3 for definitions.

Table 5. Quantile Regression Estimates: Cholesterol Intake, 1994–96

Quantile

Variable OLS 0�10 0�25 0�50 0�75 0�90

Men
Income (×10−3) −0�388 −0�060 0�052 −0�315 −0�615 −0�835

�3�13	 �0�62	 �0�47	 �2�60	 �3�46	 �2�70	
Education −5�440 0�411 −1�830 −5�195 −9�945 −7�131

�5�19	 �0�48	 �2�05	 �4�65	 �5�49	 �2�80	
Age −1�306 −0�415 −0�807 −1�174 −1�215 −2�357

�7�09	 �2�95	 �4�68	 �5�59	 �4�36	 �5�21	
Black 56�514 16�259 36�393 46�731 89�803 115�965

�4�86	 �1�85	 �3�43	 �3�36	 �3�50	 �3�72	
Hispanic −6�454 −1�759 −2�825 −0�361 10�891 25�56

�0�47	 �0�18	 �0�25	 �0�02	 �0�48	 �0�77	
R2 0�084 0�035 0�035 0�047 0�062 0�065

Women
Income (×10−3) −0�217 0�022 0�067 −0�108 −0�445 −0�363

�2�44	 �0�31	 �0�84	 �1�24	 �2�75	 �1�55	
Education −1�458 −0�261 −1�215 −1�366 −1�271 −3�508

�1�84	 �0�33	 �1�80	 �1�72	 �0�97	 �1�58	
Age −0�179 −0�032 −0�138 −0�114 −0�045 −0�073

�1�29	 �0�29	 �1�28	 �0�80	 �0�19	 �0�18	
Black 36�176 13�846 25�535 35�149 58�40 63�415

�4�88	 �2�70	 �4�14	 �4�16	 �4�96	 �3�18	
Hispanic −3�366 5�829 6�473 2�241 −2�314 −14�023

�0�39	 �0�79	 �0�86	 �0�20	 �0�18	 �0�61	
R2 0�060 0�030 0�030 0�034 0�046 0�051

Note: Absolute t-values reported in parentheses. All regressions included an intercept and 25 additional explanatory variables; see table 3 for definitions.
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Table 6. Quantile Regression Estimates: Fiber Intake, 1994–96

Quantile

Variable OLS 0�10 0�25 0�50 0�75 0�90

Men
Income (×10−3) 0�024 0�017 0�020 0�021 0�035 0�040

�4�08	 �2�82	 �3�19	 �3�51	 �4�12	 �2�75	
Education 0�239 0�196 0�291 0�292 0�284 0�303

�4�47	 �3�77	 �5�34	 �5�61	 �3�81	 �2�22	
Age −0�004 0�007 0�010 0�007 −0�013 −0�037

�0�50	 �0�96	 �1�16	 �0�78	 �1�00	 �1�96	
Black −2�188 −1�465 −1�444 −2�300 −2�780 −2�073

�4�97	 �3�16	 �3�58	 �5�65	 �3�47	 �1�80	
Hispanic 0�789 0�586 0�173 0�767 1�511 0�984

�1�39	 �1�01	 ��30	 �1�14	 �1�54	 �0�64	
R2 0�078 0�049 0�045 0�050 0�054 0�057

Women
Income (×10−3) 0�023 0�016 0�020 0�026 0�020 0�039

�5�18	 �4�45	 �5�00	 �4�84	 �3�05	 �3�65	
Education 0�351 0�253 0�270 0�387 0�470 0�354

�8�54	 �6�15	 �6�76	 �8�15	 �6�94	 �4�79	
Age 0�035 0�029 0�030 0�042 0�048 0�035

�5�18	 �4�48	 �4�80	 �5�09	 �4�80	 �1�96	
Black −0�847 −0�682 −1�195 −1�069 −1�206 −0�660

�2�61	 �2�37	 �3�84	 �2�92	 �2�18	 �0�82	
Hispanic 0�836 0�995 0�918 1�047 1�036 0�763

�1�98	 �2�29	 �2�48	 �2�23	 �1�49	 �0�76	
R2 0�104 0�063 0�067 0�066 0�069 0�067

Note: Absolute t-values reported in parentheses. All regressions included an intercept and 25 additional explanatory variables; see table 3 for definitions.

restricted estimates with the corresponding
OLS estimates, we found that in almost all
cases �R was more precisely estimated with
lower standard errors than the corresponding
OLS estimates.
The second set of statistics in table 7,

reported under each dependent variable,
gives the �2 values for the test that all slope
parameters for that dependent variable are
equal across the five quantiles. Since K = 31
and P = 5, these �2 statistics have 120 degrees
of freedom. In all cases, the equalities of
slope parameters across the five quantiles are
rejected at p < 0�001. The �2 tests, therefore,
suggest that there is significant heteroskedas-
ticity in the nutrient intake data.
For both men and women, household

income did not significantly influence sat-
urated fat intake (and total fat intake) at
any quantile. The income coefficients for
the fat intakes were also insignificant under
OLS. However, for cholesterol, the additional
information revealed by the quantile esti-
mates as compared with the OLS estimates
comes into sharper focus (table 5). The OLS
estimates showed that income had a neg-
ative (and healthwise, beneficial) effect on

cholesterol intake of both men and women.
The quantile estimates showed that much
of this beneficial effect was located at the
upper quantiles. At these quantiles in the
observed distribution, the cholesterol intakes
exceed the recommended level (table 1).
For men, the effect of income on choles-
terol intake at 0.9q was 115% larger than
the OLS estimate. This implies that, holding
other variables constant, as income increases
the upper conditional quantiles of cholesterol
intake are decreasing more rapidly than is
the conditional mean. For men and women,
the equality restrictions on income coeffi-
cients across symmetrical quantiles �q10 =
q90 and q25 = q75	 were rejected at the 10%
level.
Income had a positive effect on fiber

intake at all quantiles. However, for men and
women, the largest effect was at 0.9q. Since
the dietary risk for fiber (inadequacy) is rel-
atively greater at the lower end of the intake
distribution, the largest effect for income
might be expected at the bottom quantiles.
This was not the case, perhaps because except
for a few age groups, most adults had inade-
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Table 7. Tests for Equality of Slope Parameters across Quantiles

Saturated Fat Cholesterol Fiber

Variable q10 = q90 q25 = q75 q10 = q90 q25 = q75 q10 = q90 q25 = q75

Men
Income 0�19 0�57 6�02 12�45 2�34 2�99

�0�66	 �0�45	 �0�01	 �0�00	 �0�13	 �0�08	
Education 7�44 4�86 8�76 20�41 0�59 0�01

�0�01	 �0�03	 �0�00	 �0�00	 �0�44	 �0�93	
Age 45�26 27�14 20�15 2�16 4�63 2�82

�0�00	 �0�00	 �0�00	 �0�14	 �0�03	 �0�09	
Black 0�21 1�29 10�25 4�81 0�27 2�99

�0�65	 �0�26	 �0�00	 �0�03	 �0�60	 �0�08	
Hispanic 3�08 3�97 0�67 0�41 0�07 2�01

�0�08	 �0�05	 �0�41	 �0�52	 �0�80	 �0�16	
�2�120	 370.28 430.79 271.45

Women
Income 2�83 0�74 2�62 10�26 4�49 0�00

�0�09	 �0�39	 �0�11	 �0�00	 �0�03	 �0�94	
Education 0�00 0�09 2�15 0�00 1�66 10�27

�0�98	 �0�76	 �0�14	 �0�97	 �0�20	 �0�00	
Age 23�44 17�68 0�01 0�17 0�12 3�43

�0�00	 �0�00	 �0�92	 �0�68	 �0�73	 �0�06	
Black 0�27 0�88 6�06 8�07 0�00 0�00

�0�60	 �0�35	 �0�01	 �0�00	 �0�98	 �0�98	
Hispanic 0�36 0�03 0�72 0�46 0�05 0�03

�0�55	 �0�86	 �0�40	 �0�50	 �0�82	 �0�86	
�2(120) 261.37 281.00 216.06

Note: The numbers against the variable names are F -statistics with (1, N −K) degrees of freedom. The associated p-values are reported in parentheses.
The �2 statistics for the restriction that all slope parameters for a given dependent variable are equal across the five quantiles.

quate fiber intake even at the 90th percentile
(see tables 1 and 2).
The effect of educational attainment on

intakes of men clearly illustrates the impor-
tance of examining the whole conditional
distribution rather than just the condi-
tional mean. An additional year of educa-
tion reduced men’s saturated fat intake by
0.18 gram at the conditional mean (table 4).
However, at 0�9q, an additional year of edu-
cation reduced saturated fat intake by 0.52
gram, nearly a 200% increase in the esti-
mated effect. Both for saturated fat and
total fat, quantile estimates at the median
and below were insignificant. In fact, for
total fat, the marginal effect of education
at 0�1q was positive and numerically large
(0.32 gram). This is not surprising since at
0�1q, the observed intakes were substantially
below the recommended upper levels.
Men’s intake of cholesterol was influenced

by their educational attainment in a similar
fashion. The reduction in intakes attributable
to education was larger at the upper con-
ditional quantiles compared with the condi-
tional mean. For fiber, education had a more

uniform effect across the quantiles and the
equality of coefficients at symmetrical quan-
tiles could not be rejected. As with income,
the lack of a larger effect at the bottom quan-
tiles may be because, for the most part, the
entire observed distribution of fiber intake is
below the recommended fiber intake.
The results for men confirm that educa-

tion is positively correlated with better diets,
just as it has been shown to be positively
correlated with other desirable health behav-
iors (Grossman and Kaestner). However, for
fats and cholesterol, our results show some-
thing new. The beneficial effects of education
are much greater where they matter most—at
the upper quantiles where the risk of excess
intakes is greater. For fiber, although the edu-
cation coefficients tended to be larger at the
upper quantiles and not at the bottom quan-
tiles, the size of the coefficients was relatively
similar across the quantiles.
There is less evidence of an increasing

marginaleffectofeducationat thehigherquan-
tiles for women. Except for fiber, the OLS and
quantile estimates for education were insignif-
icant. For cholesterol, although the quan-
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tile estimates were insignificant, their opti-
mal combination—the restricted estimate—
was negative and significant (−2�4, t-value =
−5�5). The expected effect of education
may not materialize as strongly for women
because their risk of excess intake is less
than men’s. For example, women’s choles-
terol intake exceeds the recommended level
only at the 90th percentile, whereas men’s
intake is above the limit at the 75th per-
centile. For fiber, similar to men, the effect of
women’s educational attainment was signifi-
cant at all quantiles.1
Consistent with the prediction from Gross-

man’s model, men’s total fat, saturated fat,
and cholesterol intakes declined with age,
but more notably, the rate of decline rose
steadily from the lower to the upper quan-
tiles. The differences in the estimated effects
between 0�1q and 0�9q were over 200%,
and between the OLS and 0�9q over 50%,
for these macronutrients. The strong intake
response to age is not surprising given that
the health risk of poor diets is cumulative
and increases with age. Therefore, older indi-
viduals will display a greater propensity to
improve their diets compared with younger
individuals. In addition, our results show that
the age effect is strongest at the riskier part
of the intake distribution.
Women’s age had a similar pattern of

impact on saturated fat intakes. For choles-
terol, the women’s age coefficient was
insignificant under OLS and at all quantiles.
However, the optimally combined restricted
estimate was significant (−0�18, t-value =
−2�49), showing that cholesterol intake
among women does decline with age. The age
effect on women’s fiber intake was uniformly
positive across the OLS and quantile esti-
mates. The age effect on fiber intake of men
showed conflicting results under the different
estimators. While the OLS and lower quan-
tile estimates were insignificant, the 0�9q esti-
mate was negative and significant (table 6).
Although the restricted estimate was positive
and significant in accordance with our expec-
tation, the numerical effect was small (0.013,
t-value= 2�52). It is not clear why age, which
had sizable effects on other macronutrient
intakes, would have such limited impact on
men’s fiber intake.

1 In this study, we treated education as a continuous variable.
While this offers the convenience of interpreting a single coef-
ficient, it is possible that the effect of education may vary by
the level of educational attainment. This can be investigated by
entering the education variable in a nonlinear form or by using
a spline function. We leave this for future research.

The difference in saturated fat intake
between black and white men tended
to increase with the quantiles, although
interquantile equality could not be rejected.
The restricted estimate showed that black
men had significantly lower saturated fat
intake compared with white men (−1�43, t-
value = −3�06). While black men’s intakes
looked better in terms of saturated fat (and
total fat as well; restricted estimate = −3�33,
t-value = −2�42), the picture was starkly dif-
ferent for cholesterol and fiber. After con-
trolling for other effects, black men had
higher cholesterol intake and lower fiber
intake relative to white men. The point esti-
mate at 0�9q showed black men consuming
116 milligrams more cholesterol than white
men. This is twice what the OLS estimate
would have led one to believe. The black–
white difference in fiber intake was 2.3 grams
at the median (that is, 0.5q). Given that the
median fiber intake is 16.2 grams, this is a siz-
able difference (14%).
Similar to the black–white difference for

men, black women had higher cholesterol
intake and lower fiber intake compared with
white women. The black–white difference
in cholesterol was large, particularly at
the upper quantiles, and the interquantile
equality tests showed significant difference
between intakes at the lower and upper
quantiles. The black–white difference in fiber
intake for women was 1 gram at the con-
ditional median. The restricted estimate,
although of similar size, was much more pre-
cise (−1�05, t-value = −5�50). Unlike black
men though, black women’s intakes of total
and saturated fats were not significantly
lower than white women’s.
Hispanic men’s diets were significantly

lower in saturated fat intake compared with
the diets of non-Hispanic men. Based on the
restricted quantile estimate, Hispanic men
consumed 1.7 grams less saturated fat com-
pared with non-Hispanic men. The quan-
tile estimates for saturated fat indicate that
the relative difference was located at the
upper ends of the distribution. This was con-
firmed by interquantile equality tests, which
were both rejected at the 10% level. Due
to the relatively low t-values, no signifi-
cant difference between Hispanic and non-
Hispanic groups was evident for cholesterol
and fiber intakes at various quantiles. How-
ever, the restricted estimate did show a
higher fiber intake for Hispanic men (0.85,
t-value= 2�25).
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Among women, saturated fat intake was
about 0.8 gram lower for Hispanics com-
pared with non-Hispanics, based on the
restricted estimate (−0�82, t-value = −2�13).
The quantile estimates for women’s choles-
terol intake showed an interesting trend, with
the Hispanic/non-Hispanic difference revers-
ing in sign from lower to upper quantiles,
although none of the estimates were signifi-
cant. Hispanic women’s fiber intake was sig-
nificantly higher at the bottom end of the
distribution. At 0�1q, the unconditional esti-
mate of which is well below the recom-
mended level, Hispanic women tended to
consume about 1 gram of fiber more than
non-Hispanic women. Overall, the results for
men and women show that the Hispanic seg-
ment of the U.S. adult population tends to
have a healthier macronutrient intake profile
than non-Hispanics.
The data tables compiled from the 1994–

96 CSFII can be used to speculate on the
likely food sources of the nutrient intake dif-
ferences by race and ethnicity (U.S. Depart-
ment of Agriculture 1998, 1999). For exam-
ple, black men over age 20 consume only
7 grams of cheese, compared with 20 grams
consumed by white men over age 20. The
most recent data on the sources of nutrients
(Subar et al.) show that cheese is the largest
source of saturated fat and the fourth largest
source of total fat among U.S. adults.2 Black
men also tend to consume less whole and
low-fat milk, another major source of fats,
compared with white men. However, black
men consume less yeast breads and ready-
to-eat cereals, and more eggs compared with
white men, which may account for their lower
fiber intake and higher cholesterol intake.
The picture is less clear regarding the

sources of the Hispanic/non-Hispanic differ-
ence. For example, Hispanic men over age
20 consume more beef and about the same
amount of cheese as non-Hispanic white men
over age 20. Consequently, the difference in
their total and saturated fat intakes must
come from other sources. However, these
reported food intakes are mean intakes. A
clearer answer about the sources of intake

2 The food intakes reported in the data tables are mean
amounts based on day-1 of the 1994–96 CSFII (U.S. Department
of Agriculture 1998, 1999). The dietary sources of nutrients are
based on day-1 of the 1989–91 CSFII and are not separated by
race or sex (Subar et al.). These comparisons are meant to be
illustrative, especially considering that the estimated differences
reported in this article are conditional (ceteris paribus), whereas
the figures from the data tables and the dietary sources study are
unconditional.

differences may require a comparison of the
distribution of food intakes at different per-
centiles, similar to those reported in table 1
for the macronutrients.

Conclusion

Understanding and quantifying the relative
differences in food and nutrient intakes
among population subgroups is important
for guiding nutrition promotion expenditures.
The results can also contribute to improved
understanding of health risk behavior at a
time of rapidly evolving health information
environment. However, the nature of intake
distributions is such that the risk of dietary
excess or inadequacy is greater at the tails
than at the mean. Consequently, it is ques-
tionable to assume that the marginal effects
of population characteristics will be constant
along all parts of the conditional distribu-
tion of intakes. In this case, any analysis
that focuses on only one part of the distri-
bution, such as the conditional mean, may
give an incomplete picture of the sources of
intake differences in the population. In this
study, we used quantile regression, a method
suited for characterizing the entire distri-
bution of intake, to examine macronutrient
intakes among U.S. adults.
The findings clearly suggest that the

marginal effects at the tails of the intake
distribution are often quite different from
those at the mean. A more complete pic-
ture of intake differences among population
subgroups emerges from the quantile regres-
sion estimates than from the OLS estimates
alone. Of course, this entails a larger number
of estimates to consider. But in most cases,
an optimal combination of the quantile esti-
mates outperformed the OLS estimates in
precision.
These results have important implications

for future studies evaluating the dietary
impact of nutrition-related policy interven-
tions such as food assistance programs and
food labeling regulations. For such studies to
fully uncover the extent and nature of the
behavioral impact, they must look beyond
the conditional mean to parts of the dietary
intake distribution where the risk of inade-
quacy or excess is greatest.
Our results suggest that individuals, partic-

ularly men, at higher education and income
levels may have benefited more from health
and nutrition information initiatives such as
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the Nutrition Labeling and Education Act.
Certainly, this explanation is consistent with
the effect of human capital on health behav-
ior predicted by the household production
model. By comparing the influence of these
variables over a sufficiently long time-span, it
may be possible to verify the validity of this
potentially important linkage.

[Received June 2000;
accepted September 2001.]
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